testo 310 set - testo 310 프린터 세트

제품 번호  0563 3110

  • O2, CO, 연소가스 온도 및 대기 온도 동시 측정

  • 포함: 적외선 프린터

  • 연소가스, 통풍, CO 주변 및 압력 측정 메뉴

  • 30초 이내에 센서 영점화

  • 최대 10시간 동안 사용할 수 있는 리튬형 충전가능한 배터리

  • 휴대용 프린터를 이용한 측정 데이터 인쇄

충전식 배터리; O2, CO, hPa, ℃ 측정용 교정 프로토콜 포함; 적외선 프린터(0554 3100); 콘이 있는 프로브 길이 180 mm; 압력 측정용 실리콘 호스; 분진 필터 10개; 프린터용 감열지 2통

자세히 보기

제품 설명

testo 310 리플렛/매뉴얼/소프트웨어 다운로드 사이트: http://cafe.naver.com/testoman/3437

testo 310에 가장 적합하도록 특별히 개발된 적외선 인터페이스 프린터를 이용하여 필요 시 언제라도 현장에서 보고서를 작성할 수 있습니다. 어떤 측정 메뉴에서도 측정 중일 때나 측정 후의 현재 측정값을 인쇄할 수 있습니다. 따라서 사용자가 원하는 측정 결과를 그 자리에서 즉시 볼 수 있습니다. testo 310은 고품질의 전자식 연소가스 측정을 가능케 하는 많은 장점을 제공합니다. 측정, 인쇄, 그리고 작업 완료! 바로 testo 310의 신개념입니

기술 데이터

기술 데이터


배터리 제외 700 g


201 x 83 x 44 mm

작동 온도

-5 ~ +45 °C

디스플레이 종류


디스플레이 기능

백라이트 2라인 디스플레이

전력 공급

충전식 배터리 : 1500mAh; 전원 어댑터 5V/1A

보관 온도

-20 ~ +50 °C


열전대 K타입 측정 범위

-20 ~ +100 °C

열전대 K타입 정확도

±1 °C

열전대 K타입 분해능

0.1 °C

반응 시간 t99

< 50 초



열전대 J타입 측정 범위

0 ~ +400 °C

열전대 J타입 정확도

±1 °C (0 ~ +100 °C)

±1.5 측정값의 % (> 100 °C)

열전대 J타입 분해능

0.1 °C

반응 시간

< 50 초



O₂ 측정

0 ~ 21 Vol.%

O₂ 정확도

±0.2 Vol.%

O₂ 분해능

0.1 Vol.%


30 초

연소 가스 차압

통풍 측정 범위

-20 ~ +20 hPa

±0.03 hPa (-3 ~ +3 hPa)

통풍 정확도

±1.5 측정값의 % (나머지 범위)

통풍 분해능

0.01 hPa


효율 측정 범위

0 ~ 120 %

효율 분해능

0.1 %

연소가스 손실

연소가스 손실 측정 범위

0 ~ 99.0 %

연소가스 손실 분해능

0.1 %

O₂값 계산을 통한 연소가스 CO₂ 값

CO₂(O₂ 계산) 측정 범위

0 ~ CO2 max (Display range)

CO₂ (O₂ 계산) 정확도

±0.2 Vol.%

CO₂ (O₂ 계산) 분해능

0.1 Vol.%

CO₂ (O₂ 계산) 반응시간

< 40 초

압력 측정값

압력 측정 범위

-40 ~ +40 hPa

압력 정확도

±0.5 hPa

압력 분해능

0.1 hPa


CO(H2 보상없음) 측정 범위

0 ~ 4000 ppm

CO(H2 보상없음) 정확도

±20 ppm (0 ~ 400 ppm)

±5 측정값의 % (401 ~ 2000 ppm)

±10 측정값의 % (2001 ~ 4000 ppm)

CO(H2 보상없음) 분해능

1 ppm

CO(H2 보상없음) 반응시간

60 초

대기 중 CO 측정값

대기 CO 측정 범위

0 ~ 4000 ppm

대기 CO 측정 정확도

±20 ppm (0 ~ 400 ppm)

±5 측정값의 % (401 ~ 2000 ppm)

±10 측정값의 % (2001 ~ 4000 ppm)

대기 CO 분해능

1 ppm

프로판 반응 시간

60 초



분진 필터(10개)

제품 번호: 0554 0040

테스토 적외선 고속 프린터

제품 번호: 0554 0549

프린터 용지

제품 번호: 0554 0568


Draught measurement in the flue gas duct

Draught measurement is actually a differential pressure measurement. This differential pressure occurs between two sub-areas as a result of a difference in temperature. This is turn generates a flow to compensate. In the case of flue gas systems, the difference in pressure is an indicator of the “chimney flue draught”. This is measured between the flue gas and ambient air at the measurement orifice at the core of the flue gas flow.

To ensure the flue gases are safely transported through the chimney there must be a differential pressure (chimney flue draught) for boiler systems that work with low pressure.

If the draught is permanently too high, the average flue gas temperature increases and therefore flue gas loss. The level of efficiency drops.

If the draught is permanently too low, oxygen may be lacking during combustion, resulting in soot and carbon monoxide. This will also cause a drop in the level of efficiency.

Ambient CO measurement in the heated environment

Carbon monoxide (CO) is a colourless, odourless and taste-free gas, but also poisonous. It is produced during the incomplete combustion of substances containing carbon (oil, gas, and solid fuels, etc.). If CO manages to get into the bloodstream through the lungs, it combines with haemoglobin thus preventing oxygen from being transported in the blood; this in turn will result in death through suffocation. This is why it is necessary to regularly check CO emissions at the combustion points of heating systems, and places often frequented by people (in our case, where the combustion systems for hot water generation are), and in the surrounding areas.

Measuring the flue gas parameters of the burner (CO, O2, and temperature, etc.)

The flue gas measurement for a heating system helps to establish the pollutants released with the flue gas (e.g. carbon monoxide CO) and the heating energy lost with the warm flue gas. In some countries, flue gas measurement is a legal requirement. It primarily has two objectives:

1. Ensuring the atmosphere is contaminated as little as possible by pollutants; and

2. energy is used as efficiently as possible.

Stipulated pollutant quantities per flue gas volume and energy losses must never be exceeded.

Measurement in terms of results required by law takes place during standard operation (every performance primarily using the appliance). Using a Lambda probe (single hole or multi-hole probe), the measurement is taken at the centre of flow in the connecting pipe (in the centre of the pipe cross-section, not at the edge) between the boiler and chimney/flue. The measured values are recorded by the flue gas analyzer and can be logged either for print out or transfer to a PC at a later stage.

Measurement is taken by the installer at commissioning, and if necessary four weeks later by the flue gas inspector/chimney sweep, and then at regular intervals by the authorised service engineer.

Measuring pressure on burners (nozzle pressure, gas flow pressure, etc.)

Standard readings taken during services of domestic heating systems include checking the gas pressure on the burners. This involves measuring the gas flow pressure and gas resting pressure. The flow pressure, also called supplied pressure, refers to the gas pressure of the flowing gas and resting pressure of the static gas. If the flow pressure for gas boilers is slightly outside the 18 to 25 mbar range, adjustments must not be made and the boiler must not be put into operation. If put into operation nonetheless, the burner will not be able to function properly, and explosions will occur when setting the flame and ultimately malfunctions; the burner will therefore fail and the heating system will shut down.